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The paper deals with the real behaviour of granular materials undergoing deformation. A brief 
review of stress-strain relations in the mechanics of particulate solids is presented. A theoretical 
approach is described to an experimental technique of observation of the stress and strain in a gra-
nular material in an advanced stage of deformation. The boundary condition and the stress 
field of Prandtl's solution at limiting equilibrium for a wedge of granular solid is described. 
A theoretical solution of the velocity field is given using the model due to Josselin de Jong. 

Description of the flow behaviour of granular solids in storage, transport or process-
ing units is extremely difficult. A characteristic feature of all these operations are 
large and relatively rapid deformations, p 

To date there are relatively few papers in the literature on the mechanics of granular 
solids dealing with the distribution of the stress and strain in a flowing granular 
material. The majority of papers are based on the theory of soil mechanics but there 
is a great deal of inconsistency in the utilisation of these models when applied to flow-
ing granular solids and the agreement between theory and experiment is also far 
from being satisfactory. The aim of this work is to develop a suitable theoretical 
basis for selecting a proper experimental technique for the determination of the stress 
and strain field in a flowing granular material undergoing relatively large and rapid 
deformations. A part of this study is therefore devoted to a literature survey of the 
stress-strain relations and particularly those which have already found use in the 
mechanics of particulate solids and of the recent models of soil mechanics. In the 
paper a new approach is also described as to the choice of a suitable experimental 
technique for observing distribution of the stress and strain under conditions of ad-
vanced deformation. Such advanced deformation appears from the viewpoint 
of granular material storage and transport operations as most important. 

* Part VIII in the series Studies on Granular Materials; Part VII: This Journal 40, 2424 
(1975). 
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BRIEF LITERATURE SURVEY 

Of all constitutive relations of soil mechanics based on the assumption of existence 
of a plastic potential the most widely used model is that of Drucker and Prager1 . 
From the concept of the plastic potential 

F = a / t + — const (]) 

associated with the surface of plasticity and from the condition of normality of the in-
crement of plastic deformation 

i j 

we have the following relation for the volume behaviour of a strained granular 
material 

£11 + e22 + e33 = Ma . (3) 

This indicates a constant increment of the volume during plastic deformation. For 
a better agreement of the theoretical model with the real behaviour the same author 
proposed2 a concept of strengthening of the material during plastic deformation 
as a change of the shape or shift of the surface of plasticity. 

Since then, a series of models based on the existence of the plastic potential have 
been p resen ted 3 - 9 in the field of soil mechanics. These papers examine the problem 
of a suitable form of the plastic potential, solution at regular and singular points 
of the surface of plasticity and the application to various concrete cases, particularly 
those of soil mechanics. 

As a most realistic theory based on the assumption of the plastic potential ap-
pears to be the "critical state concept" which is being developed since 1958 at Cam-
br idge 1 0 - 1 3 . The shape of the limiting surface of state is shown schematically in Fig. 1. 
The spatial curve DBH is called the critical state line. If the state of a sample under 
investigation is characterized by a point on this curve it is strained under constant 
volume E without any change of the stresses N and Q. This model has been originally 
intended for cohesive materials (clays) but has been extended also to granular solids14. 

Models developed directly for granular materials have been based on the idea 
of sliding of solid grains or their assemblies. The recent theory of dilatant behaviour 
worked out by Rowe1 5 may be put forth as a typical representative. 

However, none of these recent and relatively sound models has found a broader 
application in the mechanics of particulate solids. The same applies to an earlier 
approach — the theory of marginal energy correction16 — providing similar results. 
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1742 Smid, Novosad: 

This theory served as a starting point to derive relations for the plastic potential 
for the case of plane deformation17 ,18 . 

Similarly as in the case of the theories assuming existence of the plastic potential, 
only earlier and less justified consitutive relations, which utilize assumptions about 
the volume behaviour of granular materials and mutual direction of the principal 
axes of the stress and strain tensors, have found application in the mechanics of parti-
culate solids. 

Of these relations it is the model proposed for granular solids by Ishlinskii19 

who assumes incompressibility of the granular material 

^ + = 0 
dx dy M 

and coincidence of the directions of the principal axes of the stress and strain ten-
sors leading to the Levy-Mises relations 

dv* 

dx 

dvy 

~dy 

dvx dvv 
— + —2 

dy dx 

— <7V 

2rv 
0 

Another, more frequently used model of the relation between the stress and strain 
is the theory of Geniev20 starting from the concept of existence of the so called 

A dvA' 
\ / t A \ V'o 

. \ 

A*1 H* 
\ 
\ \ 

FIG. 1 

Critical State Surface according to the Cam-
bridge Theory 

FIG. 2 

Decomposition of Velocity according to 'de 
Josselin de Jong's Model 
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active sliding characteristic line. Eq. (5) is then replaced by the equation 

^Txy _ p fdv* + tg I 1 + 1 
ax — (Ty |_2\d>' dx J dx I dx 2\dy dx J J 

and supplemented by the condition of incompressibility of the granular material. 
The sign in Eq. (6) depends on which of the systems of the characteristic lines is 
taken as active. The ideal of an active sliding line corresponds to the deviation of the 
direction of the principal stresses and strains by a half of the angle of internal friction 
of the material, i.e. £ = ±0/2. 

A more recent deviation theory, making use of a general deviation angle g21>22
9 

or models starting from the concept of simultaneous sliding along both systems 
of the sliding characteristics23 '24 have found so far practically no application in the 
mechanics of granular solids. A similar situation exists as far as the model of Josselin 
de Jong2 5 '2 6 is concerned. The decomposition of the velocities in the vicinity of the 
examined point M according to this model is shown in Fig. 2. 

The total increase of the velocity duj at the point or dv2 at M2 is decomposed 
into a component parallel to the sliding characteristic of the second system, dy la and 
dv2b, which represent double sliding and perpendicular components, du l q and dy2p, 
characterizing rotation of the system of the sliding lines. For the two components 
we can write 

du lq sin (j) = dvlx sin /?2 — dvly cos /32 , 

dv2p sin 4> = dv2x sin ^ — dv2y cos ^ , 

dvla sin 4> = — du l x cos — du ly sin ^ , 

dv2b sin (j) = — dv2x cos /?2 — dv2y sin P2 . (7) 

Introducing quantities a and b, characterizing double sliding for which it follows 
from their physical meaning of frictional forces and also from the requirement of 
a non-negative value of dissipated energy that a ^ 0 and b ^ 0, we obtain after 
substitution and some arrangements de Jong's constitutive inequalities 

s [ _ ( t o . _ s i n 2l /, + ( ? h + cos 2*1 cos 4> ^ 
\dx dy J \dy dx J J 

< 
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These nonequalities expressed on Mohr ' s circle of deformat ion represent deviations 
of the directions of the principal stresses and strains in the limits 

-m^^+m. (9) 
The constitutive inequalities are supplemented by the condition of incompressibility 
of the granular material, Eq. (4). This condit ion is obtained by substituting angular 
velocity, Q, of the rotat ion of both systems of the characteristics into Eq. (7) and also 
af ter some arrangements aimed at elimination of the unknown angular velocity 
of rotation. 

The above review indicates that numerous theoretical relations have been formulated 
in the literature on soil mechanics which more or less accurately describe the real 
behaviour of deformed soil. However, in the mechanics of particulate solids, where 
the flow in various technological units represents as a rule a very complex problem, 
there exists a considerable degree of uncertainty stemming f rom inconsistency 
of application of these models. To give an example, Jen ike 2 7 , 2 8 has used Drucker ' s 
model to solve the problem of the flow of a granular material in a bunker while 
in another pape r 2 9 the same author has made use of the expression for incompresibil-
ity and coaxiality (Ishlinskii); Geniev 2 0 has solved the same problem using his own 
model of the active sliding characteristic. Yet, in all these solutions the assumption 
regarding the properties of the materials have bsen the same. 

The flow of granular solids in storage, t ransport and process equipment is usually 
of a very complicated nature, a number of sliding surfaces appear and numerous 
other factors, such as e.g. the geometry of the equipment, the coefficient of external 
friction etc., play a role in the process. A whole series of phenomena have been 
observed, such as for example pulsation of stresses etc., which cannot be so far 
satisfactorily accounted for . 

Thus it can be concluded that the problem of stress-strain relations in an advanced 
stage of deformation deserves fur ther attention. This situation was therefore analyzed 
and af ter evaluating several cases of approach it was decided that performing ex-
periments in an apparatus satisfying the boundary conditions of the so called Prandtl ' s 
solution would be an advantageous experimental technique. 

THE BOUNDARY CONDITIONS AND THE FIELD OF STRESSES 

OF PRANDTL'S SOLUTION 

Prandt l ' s theoretical solution has been based on the usual assumptions as to the 
behaviour of granular material . The material is regarded to be a homogeneous, 
isotropic continuum in the stage of limiting plastic equilibrium as shown in Fig. 3. 
The limiting state of the stress is governed by the straight line envelope of the Mohr ' s 
circles with an angle of internal friction </> and zero cohesion. 
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The region of the granular material confined by the arms of the acute angle AOB 
is subjected to an outer total stress, q.d, making an angle (j) with the normal to OA 
as shown in Fig. 4. The components of the stress a and T on OA are then constrained 
by 

The arm OA is then the locus of the limiting state of stress of the granular solid 
having the angle of internal friction </>. OA is thus one of the sliding lines. 

The same can be said about O B and if the directions of the tangential components 
of the stress, ra and Tb, are identical to the directions shown in the figure then, as 
shown by P r a n d t l 3 0 - 3 2 , both of these sliding lines belong to the same system of sli-
ding lines formed by a bunch of straight lines intersecting at 0. The point 0 is a sin-
gular point of Prandtl's solutions. 

The condition of constant angle of intersection of the sliding lines of both systems, 
tt/2 — 0, yields the form of the second system of the sliding lines. The second system 
is therefore formed by a family of logarithmic spirals and the whole system of sliding 
lines is thus described by 

and the form of the system of sliding lines is independent of the angle a of Prandtl's 
wedge. 

= ^a . tg 0 . (10) 

5, = <9 = konst , 

s2 = r = r0 exp ( 0 tg <f>) 

t 

A 

F I G . 3 F I G . 4 

Limiting State of Equilibrium of Ideal Gra-
nular Material 

Boundary Conditions of Prandtl's Wedge 
and Shape o f Sliding Lines 
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Neglec t ing the weight of the g r anu l a r solids we can wri te f r o m a m o m e n t u m 
ba lance a b o u t the po in t 0 f o r the to t a l stress on the sl iding line at t he po in t M 

q = qa exp ( — 20 tg 0 ) . (12) 

Analysis of t he l imit ing stress of the g r a n u l a r ma te r i a l (Fig. 3) yields f o r individual 
c o m p o n e n t s of t he stress 

= 4a[( l + sin2 0 ) / c o s <£)] exp ( - 2 0 tg 0 ) , 

o@ = 4 a c o s < £ . e x p ( - 2 0 t g < £ ) , (13) 

x r 0 = qa sin (j> . exp ( - 2 0 tg 0 ) . 

T h e presen ted solut ion satisfies the genera l e q u a t i o n s of p lane l imi t ing equ i l ib r ium 
f o r a weightless mater ia l 

dOf + 1 dxT0 + gT - oe = Q dxr0 + 1 do^ + ^ x ^ = Q ^ ^ 

dr r dQ r dr r 80 r 

since d i f fe ren t i a t ion of Eqs (13) a n d subs t i tu t ion in to E q . (14) yields ident i ty . 

APPLICATION OF THE MODEL D U E TO DE JOSSELIN DE JONG 

TO PRANDTL'S WEDGE 

T h e m o d e l of de Jossel in de J o n g 2 6 yields a set of inequal i t ies (8) represen t ing 
the cond i t ion of devia t ion of t he d i rec t ions of the p r inc ipa l stresses a n d d e f o r m a t i o n s 
in the range given by inequal i ty (9) supp lemen ted with t he cond i t ion (4). 

FIG. 5 

Directional Angles of Sliding Lines and 
Trajectories of Principal Stresses in Prandtl's 
Wedge 
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Applying this model to the problem of deformation of a granular material in 
a wedge satisfying the boundary conditions of Prandtl's solution it is convenient 
to work in polar coordinates. Individual components of velocity are then related 
by 

vx = vr cos 0 — ve sin 0 , vy = vr sin 0 + ve cos 0 . (15) 

After some rearrangement the constitutive inequalities (8) take the form 

f —2 — cos (2\{/ — 20) — + - — — — ^ sin (2^ - 20)1 sin 0 ^ 
[_ dr \ dr r 60 r ) J 

^ [ - 2 ^ sin (2* - 2 0 ) + + i ^ - M cos (2* - 2 0 ) 1 cos 0 <; 
{_ dr \dr r 30 r J J 

^ [ + 2 cos (2^ - 20 ) + + i ^ - M sin (2«A - 2 0 ) 1 sin 0 (16) 
I_ dr \ dr r 50 r / J 

and the condition of incompressibility in Eq. (4) the form 

+ + ^ = (17) 
dr r d0 r 

Fig. 5 shows the characteristic directional angles of the sliding lines and the trajecto-
ries of the principal stress as they follow from Prandtl's solution. 

In order that we may retain a positive orientation of the sliding lines in accord 
with the derivation of de Jossslin de Jong we write for the directional angles that 

^ = 0, = 0 - (jc/2 + <f>), ip = 0 - (tt/4 + 0/2) . (28) 

From here it then follows 

cos (2i]/ - 20) = - s i n 0 , sin (2x1/ - 20) = - c o s 0 . (19) 

Substituting Eq. (19) into (16) a relation for de Jong's model applied to Prandtl's 
solution results which after some arrangement takes the form 

+ (20) 
dr \ dr r d0 r ) 

This constitutive inequality is supplemented with the condition of incompressibility, 
Eq. (17), without change. 
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Experimental apparatus which would satisfy the boundary conditions of Prandtl's 
solution would be suitable for investigating the real behaviour of strained granular 
materials. Such an equipment would permit considerable deformations allowing 
measurement of the stress and strain. The advantage of Prandtl's solution is that 
the family of sliding lines is independent of the angle of the wedge and hence con-
stant throughout the deformation process. 

At odds with the real experimental conditions appear to be the neglected effects 
of the weight of the granular material in the theoretical solution as well as a precise 
simulation of the boundary conditions at the singular point, i.e. in the apex of the 
wedge. The weight of the granular solids will no doubt somewhat distort the shape 
of sliding lines. However, in view of the possibility of simulating precisely the shape 
of the boundary sliding lines and the symmetric orientation of the wedge with respect 
to gravity the distortion need not have any major effect. The effect of singularity 
in the neighborhood of the apex of the Prandtl's wedge may be eliminated by drop-
ping this region from data processing. 

LIST OF SYMBOLS 

a, b quantities characterizing shear along the sliding line 
E porosity of granular material 
F function, surface of plasticity 

h first invariant of the stress tensor 

ho second invariant of the stress deviator 

Kt effective normal stress 
p mean stress in granular material 
q total stress on sliding surface 

Gef effective shear stress 
r polar radius 
V velocity 
x,y cartesian coordinates 
a coefficient 
a apex angle of wedge 
P direction of sliding line 
E plastic deformation 
X parameter 
£ deviation angle 
<7 normal stress 
T shear stress 
<t> angle of internal friction of granular material 
V direction of principal stress 
Q angular velocity of rotation of system of sliding lines 
0 radial coordinate 

» 
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